Analysis of Redi Rock wall

Input data

Project : 8243 West Mercer Way, Mercer Island, WA Date : 5/17/2024

Settings

USA - Safety factor

Wall analysis

Verification methodology :	Safety factors (ASD)
Active earth pressure calculation :	Coulomb
Passive earth pressure calculation :	Mazindrani (Rankine)
Earthquake analysis :	Mononobe-Okabe
Shape of earth wedge :	Calculate as skew
Allowable eccentricity :	0.333
Internal stability :	Standard - straight slip surface
Reduction coeff. of contact first block - base :	1.00

Safety factors				
Permanent desig	n situation			
Safety factor for overturning :	SF _o =	1.50 [–]		
Safety factor for sliding resistance :	SF _s =	1.50 [–]		
Safety factor for bearing capacity :	SF _b =	2.00 [-]		
Safety factor for sliding along geo-reinforcement :	SF _{sr} =	1.50 [–]		
Safety factor for geo-reinforcement strength :	SF _{st} =	1.50 [–]		
Safety factor for pull out resistance of geo-reinf. :	SF _{po} =	1.50 [–]		
Safety factor for connection strength :	SF _{con} =	1.50 [–]		

Blocks

No	Description	Block height	Block width	Unit weight
NO.	Description	h [in]	w [in]	γ [pcf]
1	Block 28 PC	18.00	28.00	120.00
2	Top block 28	18.00	28.00	120.00
No.	Description	Shear bearing capacity of joint F _{min} [lbf/ft]	Max. shear strength F _{max} [lbf/ft]	Block friction
1	Block 28 PC	6061.00	11276.00	44.00
2	Top block 28	6061.00	11276.00	44.00

Setbacks

No	Setback
NO.	s [in]
1	0.000
2	0.033
3	0.135
6	0.269

Geometry

No. group	Description	Count	Setback s [in]
1	Block 28 PC	6	0.13
2	Top block 28	1	-

Base

.

a ₁	=	0.00	ft	
a ₂	=	1.00	ft	
h	=	1.00	ft	
b	=	4.00	ft	
	a ₁ a ₂ h b	a ₁ = a ₂ = h = b =	$a_1 = 0.00$ $a_2 = 1.00$ h = 1.00 b = 4.00	$a_1 = 0.00 \text{ ft}$ $a_2 = 1.00 \text{ ft}$ h = 1.00 ft b = 4.00 ft

Material

Soil creating foundation - Clay with low or medium plasticity (CL, Cl), stiff consistency, Sr > 0.8Types of reinforcements

No. Nows Two of minferrorment	Line from a	Tensile strength				
NO.	Name	Type of reinforcement	Line type	T _{ult} [lbf/ft]	R _t [lbf/ft]	R _{con} [lbf/ft]
2	Miragrid 8XT	Miragrid 8XT		7400.00	3393.87	3423.30

2. Miragrid 8XT Reinforcement details

T _{ult}	=	7400.00	lbf/ft
RF _{CR}	=	1.58	
RF_D	=	1.15	
RF _{ID}	=	1.20	
Rt	=	3393.87	lbf/ft
C_{ds}	=	0.67	
Ci	=	0.67	
α	=	0.8	
CR _{cr}	=	0.532	
R_{con}	=	3423.30	lbf/ft
	$\begin{array}{c} T_{ult} \\ RF_{CR} \\ RF_{D} \\ RF_{ID} \\ R_{t} \\ C_{ds} \\ C_{i} \\ \alpha \\ CR_{cr} \\ R_{con} \end{array}$	$\begin{array}{rrr} T_{ult} & = \\ RF_{CR} & = \\ RF_{D} & = \\ RF_{ID} & = \\ R_{t} & = \\ C_{ds} & = \\ C_{ds} & = \\ C_{R} & = \\ R_{con} & = \end{array}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$

Reinforcements

Input mode : 1 reinforcement type Reinf. installation : in every row of blocks (50%) Type of reinforcement : Miragrid 8XT Top reinforcement : straight (25%) Reinforcement geometry : identical length of reinforcements Length of reinforcement I = 2.50 ft **Reinforcements**

No.	Consider	Name	Length of reinforcement I [ft]	End pt. coordinate I _k [ft]
1	Yes	Miragrid 8XT	2.50	
2	Yes	Miragrid 8XT	2.50	
3	Yes	Miragrid 8XT	2.50	
4	Yes	Miragrid 8XT	2.50	
5	Yes	Miragrid 8XT	2.50	
6	Yes	Miragrid 8XT	2.50	

[Redi-Rock - Redi-Rock Wall + (32 bit) | version 5.2024.104.0 | Copyright © 2024 Fine spol. s r.o. All Rights Reserved | www.finesoftware.eu] [Redi-Rock International | (231) 237 - 9500 ext 3010] engineering@redi-rock.com| www.redi-rock.com]

No.	Consider	Name	Length of reinforcement I [ft]	End pt. coordinate I _k [ft]
7	Yes	Miragrid 8XT	2.50	

8243 West Mercer Way, Mercer Island, WA

Basic soil parameters

No.	Name	Pattern	Ф _{ef} [°]	c _{ef} [psf]	γ [pcf]	Ysu [pcf]	δ [°]
1	Clay with low or medium plasticity (CL, Cl), stiff consistency, Sr > 0.8		19.00	320.0	133.00	70.50	0.00

All soils are considered as cohesionless for at rest pressure analysis. **Soil parameters**

Clay with low or medium plasticity (CL, Cl), stiff consistency, Sr > 0.8

Unit weight :	γ =	133.0 pcf
Stress-state :	effectiv	/e
Angle of internal friction :	φ_{ef} =	19.00 °
Cohesion of soil :	c _{ef} =	320.0 psf
Angle of friction strucsoil :	δ =	0.00 °
Saturated unit weight :	γ _{sat} =	133.0 pcf

Geological profile and assigned soils

No.	Thickness of layer t [ft]	Depth z [ft]	Assigned soil	Pattern
1	-	0.00 ∞	Clay with low or medium plasticity (CL, CI), stiff consistency, Sr > 0.8	

Terrain profile

Terrain behind the structure is flat. Water influence

Ground water table is located below the structure.

Input surface surcharges

No.	Surcharge		Action	Mag.1	Mag.2	Ord.x	Length	Depth
	new	change	Action	[lbf/ft ²]	[lbf/ft ²]	x [ft]	l [ft]	z [ft]
1	Yes		permanent	50.00		12.00	12.00	on terrain
2	Yes		variable	300.00		12.00	12.00	on terrain
No.	Name							
1	Driveway Dead Load							
2	Driveway Live Load							

Resistance on front face of the structure

Resistance on front face of the structure is not considered. **Settings of the stage of construction**

Design situation : permanent Reduction of soil/soil friction angle : do not reduce

Verification No. 1

Forces acting on construction

Name	F _{hor}	App.Pt. F _{vert}		App.Pt.	Design	
	[lbf/ft]	z [ft]	[lbf/ft]	x [ft]	coefficient	
Weight - reinforced soil	0.0	-5.38	3678.0	3.96	1.000	
Active pressure	479.5	-1.38	165.1	5.64	1.000	
Driveway Dead Load	72.6	-2.20	48.0	5.64	1.000	
Driveway Live Load	562.6	-2.84	287.9	5.64	1.000	
Weight - wall	0.0	-5.08	2844.2	1.55	1.000	

Verification of complete wall

Place of verification : bottom of blocks

Check for overturning stability

Resisting moment $M_{res} = 21804.0$ lbfft/ft Overturning moment $M_{ovr} = 2419.9$ lbfft/ft

Safety factor = 9.01 > 1.50 Wall for overturning is SATISFACTORY

Check for slip

Resisting horizontal force $H_{res} = 3637.83$ lbf/ft Active horizontal force $H_{act} = 1114.73$ lbf/ft

Safety factor = 3.26 > 1.50 Wall for slip is SATISFACTORY

Overall check - WALL is SATISFACTORY Bearing capacity of foundation soil

Design load acting at the center of footing bottom

No	Moment Norm. force		Shear Force	Eccentricity	Stress	
NO.	[lbfft/ft]	[lbf/ft]	[lbf/ft]	[-]	[psf]	
1	-2411.5	7023.16	1114.73	0.000	1453.1	

Service load acting at the center of footing bottom

No	Moment	Norm. force	Shear Force		
NO.	[lbfft/ft]	[lbf/ft]	[lbf/ft]		
1	-2411.5	7023.16	1114.73		

Verification of foundation soil

Place of verification : bottom of blocks Stress in the footing bottom : rectangle

Eccentricity verification

Max. eccentricity of normal force e = 0.000Maximum allowable eccentricity $e_{alw} = 0.333$

Eccentricity of the normal force is SATISFACTORY

Verification of bearing capacity

4

Max. stress at footing bottom σ = 1453.1 psf Allowable bearing capacity of foundation soil R_d = 3000.0 psf

Safety factor = 2.06 > 2.00 Bearing capacity of foundation soil is SATISFACTORY

Overall verification - bearing capacity of found. soil is SATISFACTORY Verification of slip on georeinforcement No. 1

Forces acting on construction (verification of reinforcement No.: 1)

Name	F _{hor}	App.Pt.	F _{vert}	App.Pt.	Design
	[lbf/ft]	z [ft]	[lbf/ft]	x [ft]	coefficient
Weight - wall	0.0	-5.08	2887.1	-0.78	1.000
Active pressure	479.2	-1.38	165.0	2.50	1.000
Driveway Dead Load	71.9	-2.20	45.7	2.50	1.000
Driveway Live Load	555.5	-2.83	274.1	2.50	1.000
Weight - reinforced soil	0.0	-4.91	3033.6	1.43	1.000

Verification against slip along geotextile No.: 1

Inclination of slip surface	=	90.00	0
Overall normal force acting on reinforcement	=	3518.34	lbf/ft
Coefficient of reduction of slip along geo-textile	=	0.92	
Resistance along geo-reinforcement	=	1111.52	lbf/ft
Wall resistance	=	1740.78	lbf/ft
Overall bearing capacity of reinforcements	=	0.00	lbf/ft

Check for slip:

Factor of safety = 2.58 > 1.50 Slip along geotextile is SATISFACTORY Calculation of internal stability No. 1

Check for bearing capacity of reinforcement No.: 1

Check for tensile strength

Tension strength $R_t = 848.47$ lbf/ft Force in reinforcement $F_x = 214.32$ lbf/ft

Safety factor = 3.96 > 1.50

Reinforcement for tensile strength is SATISFACTORY

Check for pull out resistance

Pull out resistance $T_p = 322.17$ lbf/ft Force in reinforcement $F_x = 214.32$ lbf/ft

Safety factor = 1.50 > 1.50

Reinforcement for pull out resistance is SATISFACTORY

Verification of connection strength

Connection strength $R_{con} = 855.83$ lbf/ft Force in reinforcement $F_x = 214.32$ lbf/ft

Safety factor = 3.99 > 1.50 Connection strength is SATISFACTORY

8243 West Mercer Way, Mercer Island, WA

Overall verification - reinforcement is SATISFACTORY